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Phase space density representations of inviscid fluid dynamics were recently 
discussed by Abarbanel and Rouhi. Here it is shown that such representations 
may be simply derived and interpreted by means of the Liouville equation 
corresponding to the dynamical system of ordinary differential equations that 
describes fluid particle trajectories. The Hamiltonian and Poisson bracket for 
the phase space density then emerge as immediate consequences of the 
corresponding structure of the dynamics. For barotropic fluids, this approach 
leads by direct construction to the formulation presented by Abarbanel and 
Rouhi. Extensions of this formulation to inhomogeneous incompressible fluids 
and to fluids in which the state equation involves an additional transported 
scalar variable are constructed by augmenting the single-particle dynamics and 
phase space to include the relevant additional variable. 
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1. I N T R O D U C T I O N  

The purpose  of this pape r  is to show that  phase  space densi ty  repre- 
senta t ions  for inviscid fluid dynamics ,  of the type recently discussed by 
Aba rbane l  and  Rouhi  (1) (AR),  may  be der ived and  in terpre ted  by  an 
a l ternat ive  a p p r o a c h  which seems somewha t  simpler.  This  a p p r o a c h  leads 
to the desired H a m i l t o n i a n  form of the phase  space densi ty  evolu t ion  by 
direct  cons t ruc t ion ,  and  it permi ts  an immedia t e  extension to a wider  class 
of fluid flows. 

The deve lopmen t  is based  upon  the Liouvi l le  equa t ion  co r re spond ing  
to the dynamica l  system of  o r d i n a r y  differential  equa t ions  which describes 
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the trajectories of the individual Lagrangian fluid particles./2) The phase 
density function defined by AR is shown to be a special solution of this 
Liouville equation, corresponding to the case in which there is no disper- 
sion of velocities in the initial distribution. The Hamiltonian function and 
Poisson bracket for the evolution of the phase space density then emerge 
as immediate consequences of the corresponding structure of the dynamics. 

For the case of barotropic fluids, the present approach provides a 
straightforward and purely constructive route to the formulation presented 
by AR. This case is particularly simple because the pressure gradient 
divided by density is itself the gradient of a scalar quantity. This quantity 
is formally equivalent to an external potential, which then appears as an 
additive term in the single-particle Hamiltonian. 

A similar treatment of more general inviscid fluid flows is less 
straightforward, as the pressure gradient divided by density is in general no 
longer a gradient. However, this complication can be circumvented by 
including the appropriate additional scalar variable in the single-particle 
dynamics and corresponding phase space. In the case of inhomogeneous 
incompressible fluids, the appropriate additional variable is the specific 
volume of the fluid particle, which is conserved in the motion. The 
constraint that the fluid velocity field be solenoidal is then automatically 
contained in the time evolution of the phase-space density. Compressible 
fluids in which the state equation involves an additional transported scalar 
variable may be dealt with in a similar way. We thereby obtain phase space 
density representations of these more general fluid flows, including explicit 
expressions for the Hamiltonians and Poisson brackets therein. 

2. GENERAL PRELIMINARIES 

Consider a deterministic dynamical system of the general form 

t) (1) 

where x = (xl, x2,...) is a vector of dependent variables which specifies the 
state of the system. The Liouville equation corresponding to Eq. (1) is just 
the continuity equation in state space, ~2~ 

0F 0 
+ T-" (FU) = 0 (2) 

o x  

Here F(x, t) is the probability distribution function for an ensemble of 
similar systems, each of which is governed by Eq. (1) but which differ in 
their initial conditions according to an arbitrary initial distribution F(x, 0). 
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The distribution function is defined so that F(x, t) dx is the fraction of the 
ensemble with states in the interval (x, x + dx) at time t. 

In this paper we are concerned with Hamiltonian systems, for which 
U(x, t) takes the form ~ 

u = A- (~g/~x) (3) 

where H(x, t) is the Hamiltonian function and A(x) is an antisymmetric 
matrix satisfying the condition 

(0/c~x) �9 A(x) = 0 (4) 

The antisymmetry of A implies at once that if H has no explicit time 
dependence, then it is a constant of the motion. Equation (4), together with 
the antisymmetry of A, implies that (0/c?x). [A-(0H/c?x)]=0.  Equa- 
tion (4) therefore ensures that the dynamics generates a volume-preserving 
flow in the phase space; Hamiltonian systems of physical origin always 
seem to satisfy this condition. [Here we assume that the variables x 
constitute a "natural representation" of the state of the system. (3'4t 
Otherwise, Eq. (4) must be replaced by its covariant analog, namely 
(0/~?x). (g-~/2A)=0, where g(x) is the determinant of a metric tensor in 
state space) 2~ s)] 

The Poisson bracket for the system is defined by 

{/;, x} = (~f/0x). A" (@/ex) (5) 

in terms of which the equations of motion take the form 

= {x, H} (6) 

The time evolution of an arbitrary observable quantity Q(x, t) obeys 

O=OQ/gt + {Q, H} (7) 

The corresponding Hamiltonian form of the Liouville equation is obtained 
by substituting Eq. (3 into Eq. (2) and making use of Eq. (4). The result is 

or/et + {F, H} = 0  (s) 

Thus, the Hamiltonian structure of the Liouville equation is a direct 
consequence and reflection of the corresponding structure of the underlying 
dynamics. 

Of course, there are other properties that are commonly associated 
with Hamiltonian behavior, ~6~ but they do not interact with the present 
development, so we need not assume them. Of these, the most fundamental 
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and important is that the Poisson bracket of Eq, (5) satisfy the Jacobi 
identity. If in addition the matrix A is nonsingular (which requires that 
the number of variables be even), Darboux' theorem guarantees that 
the system can be reduced to canonical form by a transformation of 
variables, (6) and this in turn implies incompressibility of the phase flow. In 
the present context, however, the incompressibility condition itself is the 
relevant property, and this condition is satisfied for a wider class of systems 
than are encompassed by Darboux' theorem. In particular, it can be 
satisfied for systems of an odd number of variables. (3~ 

3. B A R O T R O P I C  FLUID D Y N A M I C S  

We consider a barotropic fluid governed by the equations of motion/1) 

o63c_~ + V. (pu) = 0 (9) 
gt 

6311 
t63-7+ u" Vu = - V ~ +  u x ~(r)  - V~ (10) 

where p(r, t) is the mass density, u(r, t) is the fluid velocity, f~/2 is a 
rotation rate, cb(r, t) is an external potential field, and 5U(r, t) = O(p(r, t)), 
where 

1 dp(p') (11) ~,(p) = f 2 ~ + ,  
p' at,' 

and p(p) is the barotropic state function. Barotropic behavior is usually a 
consequence of assuming that either the specific entropy or the temperature 
is constant and uniform, in which case ~b respectively represents either the 
specific enthalpy or the chemical potential. 

The first step is to write down ordinary differential equations corre- 
sponding to Eqs. (9) and (10) which describe the fluid particle trajectories. 
Since a convective derivative is simply a total time derivative following a 
fluid particle, these equations take the form 

t = v  (12) 

, = -(0/63r)(~u + ~)  + v x ~(r )  (13) 

where r and v are now to be interpreted as dependent variables which 
respectively represent the position and velocity of a fluid particle. This 
system can be put into our standard Hamiltonian form by letting x = (r, v), 

H(r, v, t )=�89 1u "~ - 7*(r, t )+  ~b(r, t) (14) 
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and 

where 0 is the 3 x 3 zero tensor, U is the 3 x 3 unit tensor, and e is the 
Levi-Civita antisymmetric third-order tensor. Notice that Eq. (4) is in fact 
satisfied. According to Eq. (5), the Poisson bracket of two arbitrary 
functions f(r,  v) and g(r, v) is then given by 

= ~ r ' ~ v  ~v ~r q- X~v "f~ (16) 

from which one readily verifies that the fundamental brackets of r and v 
with each other agree with those given by AR. Equation (2) for the time 
evolution of the phase space density F takes the AR form 

~ + V . ~ r +  - ( ~ + ~ ) + v x a  -~v=0 (17) 

According to the general development of Section2, the equivalent 
Hamiltonian form of Eq. (17) is simply Eq. (8) with the Poisson bracket 
given by Eq. (16). 

Equation (17) admits a much broader class of solutions than those 
consiLdered by AR. However, it is only for the AR subclass of solutions that 
the moments of F satisfy the closed fluid dynamical equations of motion (9) 
and (10). The reason is that the Liouville equation admits solutions in 
which there is a distribution in particle velocities at each point in space, 
whereas the fluid dynamical description attributes a unique fluid particle 
velocity to each point in space. To make contact with fluid dynamics, it is 
therefore necessary to restrict attention to phase space densities propor- 
tional to a delta function in velocity space; i.e., to density functions F of the 
form 

F(r, v, t) = p(r, t) 6(v -- u(r, t)) (18) 

In order to verify that solutions of this form in fact exist, one combines 
Eqs. (17) and (18) to obtain 

J(r, t ) 6 (v -u ( r ,  t ) ) -p ( r ,  t)K(r, t), 6 ' (v-u(r ,  t ) ) = 0  (19) 

where J(r, t) stands for the left member of Eq. (9), K(r, t) = Ou/Ot + u- Vu + 
V(~U+ ~ ) - u  x fL 6'(v)= 06(v)/av, and use has been made of the identity 
v6 ' (v-  u )=  u6 ' (v -  u ) -  6 ( v -  u) U. In order for Eq. (19) to be satisfied, the 

822/50/1-2-!1 
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coefficients of 6 ( v - u )  and ~ ' ( v - u )  therein must separately vanish, and 
this requires that the functions p(r, t) and u(r, t) appearing in Eq. (18) 
satisfy Eqs. (9) and (10). Thus, phase space densities of the form (18) are 
indeed solutions of Eq. (17) if the fluid dynamical equations (9) and (10) 
are satisfied. We have therefore arrived at the AR formulation for 
barotropic fluids by an alternative and purely constructive route. 

It should be noted that the restriction to solutions of the form (18) is 
in reality only a restriction on the initial density function 
Fo(r, v )=  F(r, v, 0). The Liouville equation (17) constitutes an initial value 
problem for F, so that F(r, v, t) is uniquely determined by Fo(r, v). It 
follows that solutions of the form (18) uniquely evolve from initial condi- 
tions of the same form; i.e., if F has the form (18) at t =0,  then this form 
is preserved at all future times. 

4. COMPRESSIBLE FLUIDS WITH ARBITRARY STATE 
EQUATIONS 

We now generalize the preceding development to compressible fluids 
in which the state equation includes a dependence on an additional trans- 
ported scalar variable. The fluid dynamical equations for this case may be 
written as 

0p 
a-~ + V. (pu) = 0 (20) 

8u l ~-7+u'Vu= - - V p + u x ~ - V q 5  (21) 
UI P 

8Z ~- + u" VZ = 0 (22) 

where p, p, and Z are related by an equation of state which may be written 
as p = p(p, Z). Equation (22) states that the specific quantity Z is conserved 
along a fluid particle trajectory, and we are therefore led to consider the 
value of X for the fluid particle as an additional variable in the single- 
particle dynamical description. The single-particle dynamics corresponding 
to Eqs. (20)-(22) is therefore taken to be 

l '=v  

~r = - ( 0 / a r ) ( ~  + ~)  -4- v x ft(r) 

~ = 0  

(23) 

(24) 

(25) 
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where z is the value of ;~ for the fluid particle, and 7'(r, z, t) = ~(p(r, t), z), 
where 

fp dp' (26) 
4,(p, z)= p(p', x) 

and the integral is to be performed at constant L As in the barotropic case, 
if Z is the specific entropy, ~ is the specific enthalpy, while if ~ is the 
temperature, tp is the chemical potential. Here, however, ~ has different 
values for different fluid particles. 

The system of Eqs.(23)-(25) can be put into our standard 
Hamiltonian form by letting x = (r, v, z), 

H(r,  v, z, t) = �89 z + 'P(r, z, t) + q~(r, t) (27) 

and 

(0 ~ i) A =  - O  f~" e (28 

0 0 

where 0 is the three-dimensional zero vector. We observe that Eq. (4) is 
again satisfied. According to Eq. (5), the Poisson bracket of two arbitrary 
functions f(r ,  v, z) and g(r, v, z) is then given by 

{ f, g} Of 8g Of 8g [ Ofx Og'~ 
- S r  8v 8v 8 r + ~ , ~  ~vv) "f~ (29) 

which looks formally the same as Eq. (16), but is different because it acts 
on a different class of phase functions defined on the enlarged phase space 
(r, v, z). Equation (2) for the time evolution of the phase space density 
F(r, v, z, t) takes the form 

8F OF [ O ( g t + r b ) + v x g ~ ]  OF 
8 7 + V ' ~ r  + - O r  "~v = 0  (30) 

The corresponding Hamiltonian form is again simply given by Eq. (8), with 
the Poisson bracket defined by Eq. (29). In order to make contact with 
fluid dynamics, it is again necessary to restrict attention to density 
functions proportional to the appropriate delta functions. The appropriate 
form for present purposes is 

F(r, v, z, t )=  p(r, t ) 6 ( v - u ( r ,  t))6(z-7~(r,  t)) (31) 
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In order to verify that solutions of this form in fact exist, one combines 
Eqs. (30) and (31) to obtain 

J6(v - u) 6(z - )~) - pK" 6'(v - u) 6 ( z  - )~) - p L 6 ( v  - u) 6 ' ( z  - X) = 0 (32) 

where J(r, t) and K(r, t) are defined as before, and L(r, t) = 8 Z / 8 t  + u" VZ. 
In order for Eq. (32) to be satisfied, the coefficients J, K, and L must 
separately vanish, and this yields precisely Eqs. (20)-(22). 

This development provides a complete solution to the problem posed 
by AR of representing this class of fluid flows by means of a phase space 
density whose time evolution is Hamiltonian in character. Explicit forms 
have been given for the Hamiltonian and Poisson brackets in this represen- 
tation. This has been accomplished by augmenting the single-particle 
dynamics and phase space to include the additional variable z. In addition 
to its mathematical convenience, this augmentation is physically sensible, 
as the extra variable is needed to completely specify the state of the fluid 
particle. A description in terms of r and v alone is manifestly incomplete 
and should not be expected. Even if such a description could be found, it 
would evidently be of the nature of a contraction of the present description 
lacking any intrinsic significance. 

5. I N H O M O G E N E O U S  I N C O M P R E S S I B L E  FLUIDS 

In addition to the barotropic fluid description of Section 3, AR also 
presented a phase space density representation of homogeneous incom- 
pressible flow. In this case, however, the formulation seems unsatisfactory 
in two respects. First, the solenoidal condition on the velocity field is not 
a consequence of the phase space density dynamics but must be externally 
imposed. Second, the restriction to homogeneous flow seems essential to 
the AR development, whereas a generic treatment of incompressible flow 
should properly include the case of an inhomogeneous fluid, in which 
density continues to be transported and the solenoidal condition is a 
separate constraint. The homogeneous case is merely a special case in 
which the initial density field happens to be uniform. 

A more satisfactory treatment of incompressible flow, in which both of 
the above difficulties are eliminated, is obtained by observing that 
inhomogeneous incompressible flow is merely a special case of the develop- 
ment in Section 4. This case is realized by letting Z be the specific volume 
1/p.  Equation (22) then combines with Eq. (20) to yield the solenoidal 
incompressibility condition 

V . u = 0  (33) 
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on the velocity field. The state equation now becomes simply p = I/X, 
independent of pressure, so that the pressure is no longer given by a state 
equation but is implicitly determined by the solenoidal constraint of 
Eq. (33). Equation (26) now reduces to O(p, X)=Zp, so that ~(r, z, t )=  
zp(r, t) and Og~/Or = z @/~?r. With these identifications the entire formalism 
of Section 4 now applies to inhomogeneous incompressible flow. We have 
therefore constructed a complete Hamiltonian phase space density repre- 
sentation of inhomogeneous incompressible flow, in which the solenoidal 
condition of Eq. (33) is properly carried along during the time evolution. 

6. C O N C L U D I N G  R E M A R K S  

Phase space density representations in fluid dynamics have been 
approached from the point of view of the Liouville equation corresponding 
to the system of ordinary differential equations representing the motion of 
individual Lagrangian fluid particles. This approach establishes a direct 
connection between the Hamiltonian structure of the phase space density 
evolution and that of the corresponding single-particle dynamics. This 
equivalence is useful because the latter structure is usually easier to 
construct than the former. 

Explicit phase-space density representations, including the form of the 
Hamiltonians and Poisson brackets, have been constructed for barotropic 
fluids, inhomogeneous incompressible fluids, and compressible fluids with 
arbitrary state equations. The results for the barotropic case duplicated 
those of AR. The formulations for the other two cases are new, and were 
based upon an augmentation of the single-particle dynamics and phase 
space to include the relevant additional variable. 

One naturally inquires as to whether such phase space density 
representations are of any fundamental significance. The answer would 
seem to be in the negative. A fluid in motion is actually a system of inter- 
acting fluid particles, whereas the present representations are based upon 
finding an equivalent single-particle description, and this seems rather 
artificial. Perhaps in consequence, the Hamiltonians that appear in such 
formulations also seem artificial. Nevertheless, such representations may be 
useful for technical purposes, as the paper of AR illustrates. There may also 
be circumstances in which the corresponding systems of ordinary differen- 
tial equations, such as Eqs. (23)-(25), are useful. In particular, such 
systems might serve as a basis for the construction of numerical methods 
in which the underlying Hamiltonian structure is preserved. ~ 
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